
Remote Agent Experiment Validation

EXTENDED ABSTRACT

Remote Agent (RA) is a model-based, reusable artificial
intelligence (AI) software system that enables goal-based
spacecraft commanding and robust fault recovery. RA was
flight validated during an experiment on board of DS1
between May 17& and May 21*, 1999.

Technology Overview

RA can operate at different levels of autonomy, allowing
ground operators to interact with the spacecraft .with
immediate commands to the flight software, if needed.
However, one of the most unique characteristics of RA, and
a main difference with traditional spacecraft commanding,
is that ground operators can communicate with RA using
goals (e.g. “During the next week take pictures of the
following asteroids and thrust 90% of the time”) rather than
with detailed sequences of timed commands. RA determines
a plan of action that achieves those goals and carries out that
plan by issuing commands to the spacecraft. Actions are
represented with tasks that are decomposed on the fly into
more detailed tasks and, eventually, into commands to the
underlying flight software. When discrepancies are detected
between the desired state and the actual state, RA detects,
interprets and responds to the anomaly in real time. More
serious anomalies can be addressed with longer response
times, by generating a new plan of action while the
spacecraft is kept idle in a safe configuration. When the new
plan is generated, the spacecraft is taken out of the safe
configuration and execution resumes normally.

RA differentiates itself from traditional flight software
because it is model-based. In traditional software programs
and expert systems, the programmer decides what the result
of a program should be and writes down instructions or
rules that attempt to achieve those results. The computer
simply executes the instructions or fires the rules with no
knowledge of what the intended result was or how it is
achieving it. Each component of RA instead operates on
models, general descriptions of the behavior and structure of
the spacecraft it is controlling. Each RA component solves
problems by accepting goals and using appropriate
reasoning algorithms on its models to assemble a solution
that achieves the goals. The reasoning algorithms are
general-purpose and remain unchanged across different
deployments of RA. For different applications, the parts that
change are the models and, possibly, the problem-solving
control knowledge needed by some RA modules to tune
performance.

Remote Agent Component Technologies

Remote Agent integrates three separate technologies: an on-
board planner-scheduler (PS), a robust plan execution

1

system (EXEC), and the Mode Identification and Recovery
(MIR) system for model-based fault diagnosis and recovery.
These component technologies are described briefly below.

PS-PS generates the plans that RA uses to control the
spacecraft. Given the initial spacecraft state and a set of
goals, PS generates a set of synchronized high-level tasks
that, once executed, will achieve the goals. PS consists of a
heuristic chronological-backtracking search engine
operating over a constraint-based temporal database. PS
begins with an incomplete plan and expands it into a
complete plan by posting additional constraints in the
database. These constraints originate either from Ground,
which imposes them directly on the goals, or from
constraint templates (e.g. the camera must be pointed at an
asteroid to take a picture of it) stored in a model of the
spacecraft. PS queries domain-specific planning experts
(specialized software modules such as Deep Space One’s
navigation system) to access information that is not in its
model.

EXEC--EXEC is a reactive, goal-achieving, control system
that is responsible for:

0 Requesting and executing plans from the planner.
8 Requestinflxecuting failure recoveries from MIR
0 Executing goals and commands from human

0 Managing system resources.
0 Configuring system devices.

System-level fault protection.
0 Achieving and maintaining safe-modes as necessary.

EXEC is goal-oriented rather than command-oriented. We
define a goal as a state of the system being controlled that
must be maintained for a specified length of time. As a
simple example, consider the goal: keep device A on from
time x to time y. If EXEC were to detect that device A is off
during that period, it would perform all the commands
necessary to turn it back on. EXEC controls multiple
processes in order to coordinate the simultaneous execution
of multiple goals that are often inter-dependent. In order to
execute each goal, EXEC uses a model-based approach to
create a complex command procedure designed to robustly
achieve the goal.

MIR-The MIR inference engine provides mode
identification (diagnosis) and mode reconfiguration
(recovery) functionality. To track the state of each
component (called a mode) in the spacecraft MIR
eavesdrops on commands that are sent to the spacecraft
hardware by EXEC. As each command is executed, MIR
receives observations from spacecraft’s sensors, abstracted
by monitors in the spacecraft’s control software. MIR
combines these commands and observations with
declarative models of the spacecraft components to
determine the current state of the system and report it to

operators.

EXEC. If failures occur, MIR uses the same model to find a
repair or workaround that allows the plan to continue
execution.

The key idea underlying model-based diagnosis is that a
combination of component modes is a possible description
of the current overall state of the spacecraft only if the set of
models associated with these modes is consistent with the
observed sensor values. This method does not require that
all aspects of the spacecraft state be directly observable,
providing an elegant solution to the problem of limited
observability.

Risks

RA is flight software and as such poses the same kind of
risks posed by conventional flight software.

The autonomous behavior implemented by RA is not
qualitatively different from that displayed by conventional
fault protection or attitude control. In all cases, the
spacecraft is commanded on the basis of current state
information rather than by direct operator commands. The
behavior of RA can be predicted, within an envelope, just as
the behavior of fault protection or attitude control can be
predicted within certain bounds. Confidence in the RA’s
responses can be obtained through testing, just as
confidence in fault protection or attitude control is obtained
now.

A risk addressed by the experiment concerns the integration
and testing of the technology. RA in a novel integration of
three technologies and their application to spacecraft is also
new. For this reason there was no prior experience on
development and validation methodologies for such a
system. Another risk had to do with the integration of the AI
technologies of RA, based on general-purpose search
algorithms, together with real-time control software on a
flight processor.

Validation Objectives

The first validation objective was to demonstrate RA’s
ability to autonomously operate a spacecraft with
communication from ground limited to few high-level goals.
This translated into specific objectives for PS, EXEC and
MIR. The second validation objective was to show that RA
could be commanded with different levels of autonomy.
This meant supporting all of the possible operation modes:
using EXEC to run a traditional sequence of commands;

preparing a plan on the ground and uplinking it to the
spacecraft for execution; and providing closed-loop
planning and execution on-board the spacecraft. The final
validation objective was the first formulation of a
development and testing plan for an autonomous flight
software system.

Test Program and Results

The Remote Agent Experiment (RAX) consisted of using
the RA technology to operate the DS1 spacecraft for
several days. We developed a series of operations scenario
based on DS1 active cruise mode. In these scenarios RAX
commanded a subset of the spacecraft subsystems: Ion
Propulsion System (IPS), Miniature Integrated Camera
and Spectrometer (MICAS), Autonomous Navigation
(NAV), Attitude Control System (ACS) and a series of
power switches. The goals in the main scenario were to
execute an IPS thrust arc, acquire optical navigation
images as requested by the autonomous navigator, and
respond to several simulated faults. The faults included
minor ones that could be responded to without disrupting
the current plan, and more serious faults that required
generating a new plan to achieve the remaining goals. We
adopted a continuous integration approach in which new
features or bug fixes were integrated in new releases only
after the integrated system could successfully run the
reference scenarios on all available testbeds. We also
conducted an extensive formal testing program, separate
from the software development process. Testing was
distributed on several different platforms of different
speeds, level of fidelity and availability to the RA team.
Test cases were targeted to the most available testbed that
could validate them with the reasonable expectation that
the test result would hold on higher fidelity testbeds.

In spite of a couple of bugs that occurred during the flight
experiment, RA successfully demonstrated 100% of its
flight validation objectives.

Applicability to future NASA missions

The Remote Agent technology is applicable to any future
NASA mission that desires or requires autonomous
operations. The RA reasoning engines can be used as-is on
future missions. New domain models would be required for
each mission.

2

